Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes.

نویسنده

  • Salvatore A E Marras
چکیده

With the introduction of simple and relatively inexpensive methods for labeling nucleic acids with nonradioactive labels, doors have been opened that enable nucleic acid hybridization probes to be used for research and development, as well as for clinical diagnostic applications. The use of fluorescent hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. The use of hybridization probes that bind to the amplification products in real-time markedly improves the ability to obtain quantitative results. Furthermore, real-time nucleic acid amplification assays can be carried out in sealed tubes, eliminating carryover contamination. Because fluorescent hybridization probes are available in a wide range of colors, multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. It is therefore important to carefully select the labels of hybridization probes, based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This chapter outlines different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes.

Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucl...

متن کامل

Novel DNA probes with low background and high hybridization-triggered fluorescence

Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5'-end and a non-fluorescent quencher at the 3'-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molec...

متن کامل

Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules

We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20-30 base oligodeoxynucleotides with 5-6 bp complementary ends to which a 5' fluorophore and 3' quenching group are attached. Alone, ...

متن کامل

Minor groove binder-conjugated DNA probes for quantitative DNA detection by hybridization-triggered fluorescence.

Here we describe the properties of a novel class of oligonucleotide probes capable of sensitive hybridization-triggered fluorescence. These fluorogenic probes, known commercially as MGB Eclipse probes, are characterized by having a conjugated minor groove binder (MGB) ligand at the 5'-end and a fluorophore at the 3'-end. Additionally, they have an efficient quencher moiety at the 5'-end that is...

متن کامل

Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes.

An important consideration in the design of oligonucleotide probes for homogeneous hybridization assays is the efficiency of energy transfer between the fluorophore and quencher used to label the probes. We have determined the efficiency of energy transfer for a large number of combinations of commonly used fluorophores and quenchers. We have also measured the quenching effect of nucleotides on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in molecular biology

دوره 335  شماره 

صفحات  -

تاریخ انتشار 2006